Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami

نویسندگان

  • Benjamin Kick
  • Florian Praetorius
  • Hendrik Dietz
  • Dirk Weuster-Botz
چکیده

Scaffolded DNA origami enables the fabrication of a variety of complex nanostructures that promise utility in diverse fields of application, ranging from biosensing over advanced therapeutics to metamaterials. The broad applicability of DNA origami as a material beyond the level of proof-of-concept studies critically depends, among other factors, on the availability of large amounts of pure single-stranded scaffold DNA. Here, we present a method for the efficient production of M13 bacteriophage-derived genomic DNA using high-cell-density fermentation of Escherichia coli in stirred-tank bioreactors. We achieve phage titers of up to 1.6 × 10(14) plaque-forming units per mL. Downstream processing yields up to 410 mg of high-quality single-stranded DNA per one liter reaction volume, thus upgrading DNA origami-based nanotechnology from the milligram to the gram scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library

Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...

متن کامل

Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library

Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...

متن کامل

Complex DNA nanostructures from oligonucleotide ensembles.

The first synthetic DNA nanostructures were created by self-assembly of a small number of oligonucleotides. Introduction of the DNA origami method provided a new paradigm for designing and creating two- and three-dimensional DNA nanostructures by folding a large single-stranded DNA and 'stapling' it together with a library of oligonucleotides. Despite its power and wide-ranging implementation, ...

متن کامل

Assembly of heterogeneous functional nanomaterials on DNA origami scaffolds.

One on each side: gold nanoparticles (AuNPs) and semiconducting quantum dots (QDs) are integrated on a single DNA origami scaffold. Streptavidin-functionalized QDs bind to biotin anchors on one side of the DNA origami, while DNA-coated AuNPs bind through DNA hybridization to single-stranded DNA on the other side of the scaffold. This approach offers a new path toward the organization of complex...

متن کامل

Improved method for the production of M13 phage and single-stranded DNA for DNA sequencing.

An improved method is described for the efficient production of M13 phage and M13 single-stranded (ss)DNA in a relatively short time period. Infection of E. coli (F') cells with as few as 5 phage particles can yield 10(12) phage particles/mL in 3 hours if the cells are grown in LB broth or SOB broth supplemented with about 5 mM Mg2+. The method tolerates large variations in the initial multipli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015